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ABSTRACT

For integers a, b and ¢, the group F** < is defined to be the group
(R,$:R>= RS“RS’RS° =1). In this paper we identify certain subgroups of
the group of affine linear transformations of finite fields of order p" (for certain
p and n) as groups of type F**~ ¢ for certain (not unique) choices of a, b and c.

1. Introduction
For integers a, b and ¢, the group F“*° is defined by
F“**=(R,S:R*=RS“RS’RS * =1).

These groups were first investigated in [1] and interest in them has arisen, partly,
because they can be used to generate examples of trivalent Cayley graphs, in
particular those whose automorphism groups are regular on their vertices (see
[3]), although some with larger automorphism groups have also been found (see
[2D. Also in [2] and [3] it is shown that some of these groups are not only
metabelian but also metacyclic. The aim of this paper is the identification of
certain subgroups of the group of affine linear transformations of finite fields of
order p" (for certain p and n), as groups of type F**"* for certain (not unique)
choices of a, b, .

Let K be a field of order p”, H a subgroup of the multiplicative group K* of
K, so that |H|=(p" —1)/d for some integer d and H =(a") where a is a
generator of K*. Let L be the smallest subfield of K containing H, and let
Gdp')={{:K—K 'forx EK f:xpmrx+s,reH s&€L} Thus G(1,p")is
the group of affine linear transformations of the field K and for any 4 dividing
p" —1,G(d,p")is asubgroup of G(1,p"). Further, G(d, p) is always metacyclic.

Now suppose that p" =1 (mod 4) (so that n is even if p = —1 (mod 4)) and
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choose integers a', b’ and ¢’ as follows: (1) b’ = (p" — 1)/4, (ii) ¢’ is an integer
with @ =1—a”, and (iii) a' = b’ + ¢’. Let d be the g.c.d. of b’ and ¢’, and let
a=a'ld, b=>5b'/d and ¢ = ¢'/d. As a first step in the identification we have the
following.

THEOREM 1. (i) For a, b, ¢, d as above, G(d,p") is a homomorphic image of
Fa,b,fc'

(i) Ifp =1 (mod 4) then G(d,p") is isomorphic to a subgroup of G(1, p), while
if p=—1 (mod 4) then G(d.p") is isomorphic to a subgroup of G(1,p°).

Let i be the order of —2 modulo p, i.e. & is the smallest positive integer such
that (—2)" =1 (mod p). Clearly, if & is even, p divides (—2)*” + 1. However, if
h =4 (mod 8), so that h =4k with k odd, we even have

(=2 +1=2"%+1=0Q"+1-2%"") 2" +1+20777),
so that p divides one of 2° +1£2%*" Now let
[(-2) - Yp, it h=1 (mod 2),

m=q[(—2)""+1/p, if h=0,2 or 6 (mod 8),
[2" 4+ 1£2%9)p,  if h =4 (mod 8).

We now have the following.

THEOREM 2. Let a, b, ¢ be as in Theorem 1.
() If p= —1 (mod 4), then |F“"™°|=4bm?p°.
(i) If p=1 (mod 4), then

4bm’p®,  if b=2 (mod 4),
IFu,b.fc [ —

4bmp, otherwise.

Let us call a prime p a semi-Fermat prime if p=2"+1+2%"" or if

p =25 +1-2%"2 for some odd integer k. (For example, 5,13,41,113,2113,.. ..
are semi-Fermat primes.) Then we have the following.

COROLLARY. Let a, b, ¢ be as in Theorem 1.

(i) If p is a Mersenne prime, i.e. a prime of the form 2% —1 (so that q is an odd
prime), then b =2q, |F** | =8qp® and F*** = G(d,p").

(i) If pis a Fermat prime, i.e. a prime of the form 2° + 1 (so that q is a power of
2), or if p is a semi-Fermat prime, then |F*"°|=4bp and F**° = G(d,p").

REMARKS. (a) Note in the Corollary that if we take n =2 in part (i), we have
F*** = G(d, p®), and if we take n =1 in part (ii), we have F** ¢ = G(d, p) (for
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the appropriate values of d in each case; however the values of a, b, ¢ remain the
same).

(b) In [3], Chapter 12, the Cayley graph of the group F**~
shown to be zero-symmetric. The above Corollary identifies this group as
G(1,9), the full group of affine linear transformations of the field with 9
elements. Also, using a different generator @ for K* gives F* 7= F** 7' =
G(1,9). (The first isomorphism also follows from [1], Theorem 4.2.)

(¢) From the Corollary we have for example, F*""' = G(1,5) of order 20;
F'=G(@2,7) of order 24-49; F** = G(1,17) of order 16-17; F*"'*"'=
G(24,31°) of order 40 - 31%; F** = G(1,13) of order 12+ 13; F*>* = G(2,41) of
order 20-41; and F?* "= G(8,257) of order 32-257.

" of order 72 is

The above results are proved in Section 2. In Section 3 we analyze in detail the
kernel of the homomorphism promised by Theorem 1(i), leading to the
following. Let N be an integer > 0 and Cy denote the cyclic group of order N.

THEOREM 3. Let E denote the kernel of the homomorphism of Theorem 1(i)
and let m be as defined above.

() If p=—1 (mod 4), then E = C,,,) X Cn.

(i) If p=1 (mod 4), then

Cimi X Cimps  if b=2 (mod 4),
F =
Cn, otherwise.

Actually more is proven in Section 3. We obtain explicit generators for the
kernel as well as describe in detail the action of the group on these generators.

2. Proofs of Theorems 1 and 2

Let K, a, a, b, ¢, etc. be as in the paragraphs immediately preceding the
statement of Theorem 1.

Proor oF THEOREM 1. (i) Let R, S € G(1,p") be defined by R : x » — x and
S:xpa‘x+k (for x € K)where k =(p—1)/2. Then S :x » a™“x —a “k, so
that if we define Q = S'RSR (products from left to right) then Q :x » x +1.
Let P = SQ " Then P : x » a“x. Since L is the smallest subfield of K containing
H =(a"), we see that G(d,p")=(P, Q), whence G(d,p")=(R, S). Now clearly
d divides b’ = (p" —1)/4, so 2d divides p" —1, and

(ot = g

Hence P?"~"**= R, whence from S = PQ* we conclude that G(d,p") =(R, S).



170 M. PERKEL Isr. J. Math.

Now certainly R* = 1. The following can easily be verified:
RS“:xp—a®“x+k(1—a“)/(1—a?),
RS°RS? :x b a™x —[a™k(1 - a*)— k(1 — abd)})/(1 - a®)
=a“"x + k[1-2a™ + a“""?]/(1 - a?),
RS‘RS’RS ™ :x»—a“ ™ Yy —a “k[2-2a™ + a“™ - a“)/(1 - a?).

Now, (a+b—-c)d=2b"=(p"—1)2, so a“"* "= —1. Also, (a+b)d =
a'+b'=2b"+c¢', so a“??=a"a. Thus 2-2a™ +a“-a“=
2-2a"-2a"=2(1—a”—a”)=0. Hence, RS*RS’RS ° =1. The completes
the proof of (i).

(i) Let f € G(d,p") and consider fIL, the restriction of f to L. Since H is a
subsetof L, f (L has range in L, so that f IL is an affine linear transformation of L.
Further, for f,g € G(d,p"), if f IL =g IL, then f = g. Thus G(d,p") is isomor-
phic to a subgroup of the group of affine linear transformations of L.

Now a* = —1 so that if — [ is a square in the field Z, of integers modulo p,
a”, and hence «* too, will be in Z,, and thus so will @“. Thus L = Z, in this case.
If — 1 is not a square in Z,, then a” will lie in an extension of degree 2 of Z, in
K, so that |L|=p®. This finishes the proof of Theorem 1.

REMARK. It can also be shown, as in the proof of Theorem 1, that G(1,p") s
a homomorphic image of F***™°; however, except when d =1, these latter
groups are infinite, whereas the finiteness of the groups F“*° follows from
Theorem 2. [For n =2, d =1 only for p" = 3]

ProoOF OF THEOREM 2. First consider the group
F**™“=(R,$:R°=RS“RS’RS ™ =1)

with @ = b+ ¢. By Lemma 2.1 of [1], F**"* = F* " and b = a +(— ¢), so that
by Lemma 7.1 of [1}, $* = 1 and F*“* is a group of type H*"*. Thus, with a, b,
¢ as in the hypotheses of Theorem 2, by Theorem 7.2 of [1], F** ¢ has order
4b(2° +1-2"""cos[(b + 2c)rr/4]).

Now since $* =1 and since the g.c.d. of b’ and ¢’ equals the g.c.d. of b’ and
¢'+t(p" — 1) for any integer t. we may choose ¢’ with 1 = ¢’ = p” — 1 in defining
our group F**™ Since ¢ =1—a" we have o™ = (1 —a"¥ = —2a"". Since the
order of —2 modulo p is h we have

—2 =g for some integere, 1=e <h,

with e relatively prime to h. Thus
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2¢' = e(p" — 1)/h + b’ I'I]Od(p'I - 1),
whence
2¢"=(p" —1)(de + h +4hg)/4h, where g =0 or 1.

Now suppose that p= —1 (mod 4). Then either h=1 (mod2) or h=2
(mod 4), since h divides p — 1. Since e and h are relatively prime, in the former
case, 4e + h + 4hg has no factors in common with 2h, so that d = (p" — 1)/8h,
while in the latter case, 2¢ + /2 +2hg has no factors in common with , so that
d =(p" — 1)/4h. Thus we have

{h, if h =2 (mod 4)
b:

2h, if h=1 (mod?2)
and
{Ze +h/24+2gh if h =2 (mod 4)
c =
de +h +4gh if h =1 (mod 2).

Now when h =2 (mod 4), e =1 (mod 2), so that b +2¢ =4e +2h +4gh =0
(mod 8), so that

|Fo | =4b (2" + 12" =4b[(=2)"* + 1] = dbm’p".
When h =1 (mod 2), b+2¢ =8e +4h +8gh =4 (mod 8), so that
|F**"<|=4b(2" +1+2"")=4b[(-2)" — 1} =4bm"p",

so we are done when p = —1 (mod 4).
Now suppose that p =1 (mod 4). If h =1 (mod 2) or h =2 (mod 4), then, as in
the previous case, we get that |[F*“"~“|=4bm’p". So suppose that either h =0

(mod 8) or h =4 (mod 8). Then, since now e is odd, we have in the former case
that e + h/4+ hg has no factors in common with h, so that d = (p" — 1)/2h, while
in the latter case, e + h/4 is even and so d =(p" — 1)/h. Thus now we have

hj2, if h =0 (mod 8)
’ :{h/4, if h =4 (mod 8)
and
e+ h/4+ hg, if h =0 (mod 8)
o l(4e + h)/8+hg/2, if h =4 (mod 8).
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Now, when h=0 (mod8), b+2c=2e+h+2gh=2 or 6 (mod 8) so that
|[F“*=<|=4b(2"" 4+ 1)=4bmp, while if h=4 (mod 8), b+2c =e+h/2+hg is
odd, so that

I Fu,b.—c

=4b (2" +1 £ 2%y = 4bmyp,

since by Theorem 1 we know that p divides | F**~°|. This completes the proof of
Theorem 2.

PrOOF OF THE COROLLARY. Part (i) follows directly from Theorem 2(i) and its
proof. If p is either a Fermat or a semi-Fermat prime, then it is easy to see that
the order of —2 modulo p is congruent to 0 or 4 {(mod 8), so that, by the proof of
Theorem 2, b =0, 1 or 3 (mod 4), whence part (ii) follows from Theorem 2(ii).

REMARKS. (a) In case (ii) of the Corollary, if p =2 +1 is a Fermat prime,
with ¢ =2/, thenif t =1, b =1, so that p =5 and |F*""'| =2-5, while if t =2,
b =2 so that |[F**™° |=2"p. If p = 2* + 1 £2**"" is a semi-Fermat prime, with
k odd, then b =k, so that | F**~ | = dkp.

(b) It has already been noted that for n =2, d =1 only for p" = 3’, so that
F**7' is isomorphic to the full group of affine linear transformations over the
field of order 9. For p = 1 (mod 4), F**"° = G(1, p) only if one of the following is
true: (i) p=1(mod 16)and h = (p —1)/2, or (ii) p =5 (mod 8) and h =p — 1, s0
that —2 is a primitive root modulo p. An example in case (i) is given by
F’* 7= (G(1,17), and in case (i) F*""'=G(1,5) and F**° = G(1,13). Other
examples in case (ii) are given by primes p = 4q + 1 for g a prime, since for such
p, —2 is a primitive root modulo p (see, for example, [4], page 185).

(c) Because of the term involving g (=0 or 1) in the value of ¢ computed in
Theorem 2, we get two sets of parameters a, b, ¢ for each of the groups F**~,
giving non-trivial isomorphisms between them.

(d) For computational purposes in finding a, b and ¢, it is easiest (and by
Theorem 1(ii), sufficient) to let n =1 when p=1 (mod 4) and n =2 when
p = — 1 (mod 4). Even in the latter case, the computations are greatly simplified
by the following observation. If 8 is a primitive root modulo p, we may suppose
we have chosen the generator a of the field K of order p° so that «”*' = 8. Then,
if we know the value of ¢ such that ' = —2, h and e can easily be obtained,
from which b and ¢ can be found using the computations in the proof of
Theorem 2, and finally a =& +c.

(e) It is known as well (see [2]) that F** = G(1,7) and F"*?=F""'=
G(1,11).



Vol. 52, 1985 GROUPS OF TYPE F*~ 173

3. The kernel of the homomorphism and the proof of Theorem 3

We conclude this paper with an investigation of the kernel of the homomor-
phism from F**™° to G(d,p") of Theorem 1. Let

F“**=(R,S:R°=RS“RS’RS “ =1)

where a = b + ¢ and let E = E“*™ denote the kernel of the above-mentioned
homomorphism. Let

X, =RS*€F*° and X.=S°RS§*’"*=8§°X,§°EF*""

By Lemma 3.1, Lemma 3.3 and the proof of Theorem 7.2 of [1], we know that if
K**" denotes the derived group of F**™, then

(i) F**™¢=K*"°-(S), a split extension, and

(i) K*"™¢ is abelian and generated by X, and X-.

Recall as well that §*° = 1 so that the index of K**™° in F**™¢ is 4b. (Note that
in applying the proof of Theorem 7.2 of [1], we are using the fact that
F**~¢ = F* " via the isomorphism R» R and S~ S "))

LEmMMA 1. Fori=1and 2, RXR =X

ProOF. Since X,=RS? we have RX,R=S"R=X;'. Now X,=
S7°RS**** = RS’RS “**** = R§’RS™" =[R,S™"). (Here [x,y] denotes the
commutator x 'y 'xy.) Thus RX,R =S’RS°R =[S"",R]=X:' and we are
done.

LEMMA 2. For i=1 and 2, S7*XS”’ =X;' and S “OXS“ =X
Further, X;i= S °X.S8° and X.=S""X,5°X,.

Proof. The first equalities follow from the definitions of X, and X-. For the
second, note that X, = RS =RS*"*°* =8°RSRS"*=S°[R,S"]S™". Also
Xi=RS”RS* =(RS’R)’S* =(S“RS°)S* = S™“[R,$"]S¢ since a =b +c.
Thus S$°°X,8*"° = X%, Since X,=857°X,S% it follows as well that
§$TX,87 = X

Now from above, X:=8 °S7°X,5°S° = 8§ °X,S°. Also, X,X7' =S “RS°R =
S™°S‘RS™*=S°RS*=8"X,S" using $* =1. Thus X;=S"X,$°X,, con-
cluding the proof of the lemma.

For the remainder of this section, a, b, ¢, d, ¢ and g will be as in the proof of
Theorem 2. We consider various cases.

Case (i). p= —1 (mod4)
As pointed out in the proof of part (ii) of Theorem 1, H ={a“) lies in an
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extension of degree 2 of Z, so [L|=p" Thus |G(d,p")|=|H|IL|=
p’(p" — 1)/d. Using the values of d and b found in Theorem 2, we have that
|[E]l=mand |K** " |=m’p’.

Now if h=1 (mod2) then b=2h=2 (modd4), so that h(a+c¢)=
b*+4eb +2gh*=2b (mod 4b). Thus $"“*“= 8" 5o that by Lemma 1, X;'=
§7PXS =§ Mt §M = X' Thus the order of X; divides 2" +1=
—{(=2)" —1]= —mp =|m|p. Hence, since K**"* is abelian, generated by X,
and X., and has order m’p", we have that

Ka.b,*( — <X1> X <X:> = C’m“,, X C[m|p»

where for N >0 an integer, Cv denotes the cyclic group of order N. Thus
E = (X)) X(X)= Cm; X C.

Since e and h are relatively prime, we can choose a positive integer f so that
ef =1 (mod h). Then from h =b/2 we get 8ef =8 (mod 4b). Now a +¢ =
2b +8e +4gb so that $**° = §***% whence from Lemma 2, for i =1 and 2,
S “X.$" = X;", so that

STUXSY =S IX S = XY

Further, ¢ =4e + h +4gh = h (mod 4) and a = b + ¢ =3h (mod 4) from which
we get that either a= =1 (mod8) or ¢ = *1 (mod §). From this we can
determine the action of S on X; (by conjugation). For example, if ¢ =1 (mod 8),
then by Lemma 2,

Xi=87X.8°=85'STX,8S, where k = (¢ —1)/8,

so that X; =8 'XV™"S. Thus SX1S '= X{ ™ from which we can get $X,§ ' =
X7 ' since | Xi| =] X:|is odd. If @ =1 (mod 8) then using X, =5 °X,S* we
get SX.87'= X{ where here k =(a —1)/8. We get similar results when
c=—1 (mod8) or a= -1 (mod 8). This completes the analysis for h =1
(mod 2).

If h=2 (mod4), then b=h=2 (mod4), so that (a+c)h/2=
b*+2eb +2gb>=0 (mod 4b) since here e is odd. Thus by Lemma 1,

LY

- h 2 /2 2
X,‘ :S {(a+cihl X[s(a*c)/ :X,‘

Hence the order of X, divides 2"°—1= —[(=2)"*+1] = —mp = |m|p, so that
again we have K" = (X,) * (X,) and E = (X?) X (X5) = C}y X C}), as before.

Choosing f as before, we now have that 4ef =4 (mod 4b), so that from
a+c=2b+4e+4gh we have S'X:S*= X\ for i =1,2. In this case a =1
(mod 4) so that, using X,=S°X,S° we get SX,S '=X{"" where now
k =(a — 1)/4. This completes Case (i).
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Case (ii). p=1 (mod4)

As pointed out in the proof of part (ii) of Theorem 1, H = (a®) lies in Z,, so
|L|=p. Thus |G(d,p")|=p(p" —1)/d. Using the values of d and b found in
Theorem 2, we now have that

m’p, if b =2 (mod 4),
|E| =

m, otherwise.

Also
m’p®, if b =2 (mod 4),
lKavb,fc I —

mp,  otherwise.

Now b =2 (mod 4) precisely when h =1 (mod 2) or h =2 {mod 4), so that, as in
Case (i), we obtain K**7° = (X,) X (X,). Also, the action of S by conjugation on
X and X, is as found in Case (i). However E is different, as we shall now see.

‘=qa%isin Z,.
So choose an integer t, 1=t<p, so that a*=¢ (modp). Under the
homomorphism of Theorem 1(i), X, gets mapped to x » x —(1— )™ and X,
gets mapped to x » x —a*(1—a“)" in G(d,p"). Thus X:'X, gets mapped to
the identity in G(d,p"), whence X;'X: is in E and has order |m|p. Thus

Since p =1 (mod 4), we have observed in Theorem 1(it) that a

E = (X{) X(X1'X3) = Ciy X Cipup-

This completes the analysis of E when h =1 (mod 2)or h =2 (mod 4) (i.e. b =2
(mod 4)).

Suppose b is odd, so that h =4b =4 (mod 8). Then again choose a positive
integer f so that ef =1 (mod h). Now a + ¢ =2b + e +4gb, so that $*** = §**,
whence by Lemma 2, for i =1 and 2, $ °XS° = X.*, so that $7'X.§ = X\
Now, again by Lemma 2, X, =S °X,$"X,, so that X, = X{™"*". Since f is odd,
and since | X, | divides mp, which divides (- 2)"” + 1, we have X = X|**""
the sign in the exponent is chosen according as f=~1 (mod4) or f= +1
(mod 4), respectively. Thus X is in (X} and hence K*** =(X,)=C,, and
E={(XD=_C,.

Finally, suppose b =0 (mod 4), so that h =2b =0 (mod 8). Again choose f as
before, so that 2ef =2 (mod 4b). Now a + ¢ =2b +2e +4gb so that we now
have $7°X.$°= X" for i =1,2. By Lemma 2, X,=§"X,$"X,, whence

, where

1220/

140
Xz= X] = Xl ’

since |X,| divides mp =2"*+1, where the sign in the exponent is chosen
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according as f= *1 (mod 4). In any event, X is in (X,) and hence K**™* =
(X1)=C,, and E = (X?!)= C,. This completes Case (ii) and the analysis of the
kernel.
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