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A B S T R A C T  

For integers a, b and c, the group F °b ~ is defined to be the group 
(R, S :R'- = RS"RS~RS c = 1). In this paper we identify certain subgroups of 
the group of affine linear transformations of finite fields of order p" (for certain 
p and n) as groups of type F °'b" c for certain (not unique) choices of a, b and c. 

1. Introduction 

For  integers a, b and c, the group  F ~'b c is defined by 

F °'b'-c = ( R , S  : R 2 = R S a R S ~ R S  ~ = 1). 

These  groups were first invest igated in [1] and inierest  in them has arisen, partly,  

because  they can be used to genera te  examples  of  t r ivalent  Cayley graphs,  in 

par t icular  those whose a u t o m o r p h i s m  groups  are regular  on their vertices (see 

[3]), a l though some with larger a u t o m o r p h i s m  groups  have also been  found (see 

[2]). Also in [2] and [3] it is shown that  some of these groups  are not only 

metabe l i an  but  also metacyclic.  The  aim of this pape r  is the identification of 

certain subgroups  of the group  of affine linear t rans format ions  of finite fields of 

o rder  p"  (for certain p and n), as groups of type F a'b" c for certain (not unique)  

choices of a, b, c. 

Let  K be a field of o rder  p",  H a subgroup  of the mult ipl icat ive group  K*  of 

K, so that  I H l = ( p " - l ) / d  for  some integer  d and H = ( a  d) where  a is a 

gene ra to r  of K* .  Let  L be the smallest  subfield of K containing H, and let 

G ( d , p ° ) = { f  : K ~ K Ifor  x ~ K, f : x ~ rx + s, r E  H,  s E L } .  Thus  G ( 1 , p " )  is 

the g roup  of a n n e  l inear t r ans format ions  of the field K and for  any d dividing 

p" - 1, G ( d ,  p"  ) is a subgroup  of G (1, p"  ). Fur ther ,  G ( d ,  p )  is always metacyclic.  

Now suppose  that  p ° --- 1 (mod 4) (so that  n is even if p -= - 1 (rood 4)) and 
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choose integers a ' ,  b '  and c '  as follows: (i) b '  = (p" - 1)/4, (ii) c '  is an integer  

with a c, = 1 - a b,, and (iii) a '  = b '  + c' .  Let  d be the g.c.d, of b '  and c ' ,  and let 

a = a' /d,  b = b ' /d  and c = c'/d. As a first step in the identification we have  the 

following. 

THEOREM 1. (i) For a, b, c, d as above, G ( d , p " )  is a homomorphic image of  
Fa, b, c, 

(ii) I f  p -= 1 (mod 4) then G(d,  p ") is isomorphic to a subgroup of G(1,  p) ,  while 

/ f p - =  - 1  (mod 4) then G(d.  p" )  is isomorphic to a subgroup of  G(1,p2) .  

Let  h be the o rder  of - 2 modu lo  p, i.e. h is the smallest  posi t ive in teger  such 

that  ( - 2)" --- 1 (mod p).  Clearly,  if h is even,  p divides ( -  2) h/2 + 1. Howeve r ,  if 

h =-4 (mod 8), so that  h = 4k with k odd,  we even have  

( -  2) ",e + 1 = 22k + 1 = (2 k + 1 - 2'k+')/2)(2 ~ + 1 + 2~k+')/2), 

so that  p divides one of 2 k 4-1-+2 ~k+')/2. Now let 

[ ( - 2 )  a - l]/p, if  h =- 1 ( m o d  2) ,  

m = [ ( - 2 ) " / 2 +  1]/p, if h -= 0,2 or 6 (mod 8), 

[2 "/4 + 1 -+ 2 ~h+4~/8]/p, if h -= 4 (mod 8). 

We  now have the following. 

THEOREM 2. Let  a, b, c be as in Theorem 1. 

(i) I f  p =- - 1 (mod 4), then [F ~'b'-c I = 4bm2p2. 

( i i )  If p ~- 1 (mod 4), then 

4bm2p , if b -= 2 (mod 4), 

] F°.b. c [ = I. 4bmp, otherwise. 

Let  us call a pr ime p a semi-Fermat  prime if p = 2 k + 1 + 2  ~k+1)/2 or  if 

p = 2 k + 1 - - 2  0'+1)/2 for  some  odd integer  k. (For example ,  5, 13,41,113,2113 . . . .  

are s emi -Fe rma t  pr imes. )  Then  we have the following. 

COROLLARY. Let  a, b, c be as in Theorem 1. 

(i) I f  p is a Mersenne prime, i.e. a prime of  the form 2 q - 1 (so that q is an odd 

prime), then b = 2 q ,  I F  "'b" c[ = 8 q p :  and F ~'b'-~ ~ G ( d , p " ) .  

(ii) I f  p is a Fermat prime, i.e. a prime of  the form 2 ~ + 1 (so that q is a power of  

2), or if p is a semi-Fermat  prime, then ]F°'~'-c ] = 4bp and F ~'b" ~ ~ G ( d , p " ) .  

REMARKS. (a) Note  in the Corol lary  that  if we take n = 2 in par t  (i), we have  

F "b'-~ -~ G(d,  p2), and if we take n = 1 in par t  (ii), we have  F "'b" ~ ~ G ( d , p )  (for 
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the appropriate values of d in each case; however the values of a, b, c remain the 

same). 

(b) In [3], Chapter 12, the Cayley graph of the group F 3'2' ~ of order 72 is 

shown to be zero-symmetric. The above Corollary identifies this group as 

G(1,9),  the full group of affine linear transformations of the field with 9 

elements. Also, using a different generator a for K* gives F 7"2" 5~ F3.2-1~ 

G(1, 9). (The first isomorphism also follows from [1], Theorem 4.2.) 

(c) From the Corollary we have for example, F2'~'-1 ~ G(1,5)  of order 20; 
F 7'6' ~ -  G(2,72) of order 24.49;  F~'4"-5~ G(1,17) of order 16.17; F21111~-11~ 

G (24, 312) of order 40. 312; F ~'3 ~ ~ G(1, 13) of order I2 .13 ;  F ~'5" 4 ~ G(2, 41) of 

order 20.41;  and F 23"8' ~ - G ( 8 , 2 5 7 )  of order 32. 257. 

The above results are proved in Section 2. In Section 3 we analyze in detail the 

kernel of the homomorphism promised by Theorem l(i), leading to the 

following. Let N be an integer > 0 and CN denote the cyclic group of order N. 

THEOREM 3. Let E denote the kernel of the homomorphism of Theorem I(i) 

and let m be as defined above. 

(i) f f p  -: - 1 (rood 4), then E ~- CI,~ Ix Cim. 

(ii) I f  p ~ 1 (rood 4), then 

I CI"I x Clmlp , if b -= 2 (rood 4), 
E [ C,, , otherwise. 

Actually more is proven in Section 3. We obtain explicit generators for the 

kernel as well as describe in detail the action of the group on these generators. 

2. Proofs of Theorems 1 and 2 

Let K, a, a, b, c, etc. be as in the paragraphs immediately preceding the 

statement of Theorem 1. 

P~OOF OF THEOREM 1. (i) L e t R ,  S ~ G ( 1 , p " ) b e d e f i n e d b y R : x ~ - x a n d  

S : x ~ a d x + k  ( f o r x C K )  w h e r e k = ( p - 1 ) / 2 .  T h e n S  - l : x ~ a - d x - a  ~k, so 

that if we define O -- S-~RSR (products from left to right) then Q : x ~ x + 1. 

Let  P = SO-k. Then P : x ~ a dx. Since L is the smallest subfield of K containing 

H = (a" ) ,  we see that G ( d , p " )  = (P, O), whence G(d,p")<-_ (R, S). Now clearly 

d divides b' = (p" - 1)/4, so 2d divides p" - 1, and 

( o d ) ( p n  l ) /2d o~(pn 1)/2 -~ __ 1. 

Hence p<p,-t)/2~ = R, whence from S = pQk we conclude that G ( d , p " )  = (R, S). 
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Now certainly R 2 = 1. The  following can easily be verified: 

R S "  • x ~ - a " d x  + k ( 1 -  a ° d ) / ( 1 -  ad) ,  

R S ° R S  b : x ~ a ~°+b~ x - [abdk(1 -- a°~)  - k(1 - a b d ) ] / ( 1  - a d)  

= cr~a+b~'~x + k[1 - 2 a  ~ + a ~ " + b ) d ] / ( 1  - -  a ' ~ ) ,  

R S ~ R S b R S  c " x  ~ -  a~+b-C~dX -- a ~ k [ 2 - 2 c ~  bd + a C°+b~" - a ~ d ] / ( i -  aa ) .  

Now,  ( a + b - c ) d = 2 b ' = ( p " - l ) / 2 ,  so c¢ ( ~ + b - c ) d = - l .  Also,  ( a + b ) d =  

a ' + b '  = 2 b ' + c  ', so a I~*b~a = a ~ - b ' a  "'. Thus  2 - 2 a  bd + a  ~a+b~d - a  ~a = 

2 - 2 a b ' - 2 a  ~'= 2 ( 1 -  a b ' -  a '~')= 0. Hence ,  R S ° R S b R S  ' = 1. The  comple tes  

the p roof  of (i). 

(ii) Let  f E G ( d , p  ~) and consider  f IL, the restr ict ion of f to L. Since H is a 

subset  of L, f 1~ has range in L, so that  f Ic is an affine linear t r ans fo rmat ion  of L. 

Fur ther ,  for  f , g  E G ( d , p " ) ,  if f Ic = g IL, then f = g. Thus  a ( d , p  ° )  is i somor-  

phic to a subgroup  of the group  of affine l inear t rans format ions  of L. 
2b'  N o w a  = - l s o t h a t i f  - l is a square  in the field Z e of integers m o d u l o p ,  

b' OlC" d a , and hence too,  will be  :in Z e, and thus so ~vill a . Thus  L = Zp in this case. 

If - 1 is not a square  in Ze, then a b, will lie in an extension of degree  2 of Zp in 

K, so that  IL l  = p 2 .  This finishes the proof  of T h e o r e m  1. 

REMARK. It can also be shown, as in the proof  of T h e o r e m  1, that  G(1 ,  p ") is 

F , however ,  except  when d = 1, these lat ter  a h o m o m o r p h i c  image of °"~" ~'" 

groups  are infinite, whereas  the finiteness of the groups  F "b-¢  follows f rom 

T h e o r e m  2. [For n => 2, d = ] only for p"  = 3-'.] 

PROOF OF THEOREM 2. First consider  the group  

F ''b" ~ = ( R ,  S " R 2 = R S ~ R S b R S  -~ = 1) 

with a = b + c. By L e m m a  2.1 of [1], F "b'-~ = F . . . .  b and b = a + ( -  c), so that  

by L e m m a  7.1 of [1], S ~b = 1 and F ~'b" ~ is a g roup  of type H °'b" 2 Thus,  with a, b, 

c as in the hypotheses  of T h e o r e m  2, by T h e o r e m  7.2 of [1], F ~'b" ~ has order  

4b(2 b + 1 - 2 ~+b/-~ cos[(b + 2c)7r/4]). 

Now since S ~b = 1 and since the g.c.d, of b '  and c '  equals the g.c.d, of b '  and 

c '  + t ( p "  - 1) for any integer  t.. we may  choose c '  with 1 _-< c '  _-< p"  - l in defining 

our  g roup  F a'b" c. Since c~ ~ '= 1 - O: b' we have a -~'= (1 - ab ' )  -~ = - 2 f f  b'. Since the 

order  of - 2  modulo  p is h we have 

- 2 = a ~ f ' "  ~/h for some integer  e, 1 _-< e < h, 

with e relat ively pr ime to h. Thus  
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2c'=- e(p" - 1)/h + b' mod(p"  - 1), 

whence 

2 c ' = ( p " - l ) ( 4 e + h + 4 h g ) / 4 h ,  w h e r e g = 0 o r  1. 

Now suppose that p = - -  1 (mod 4). Then  either h ~ 1 (mod 2) or h - - -2  

(mod 4), since h divides p - 1. Since e and h are relatively prime, in the former  

case, 4e + h + 4hg has no factors in c o m m o n  with 2h, so that d = (p" - 1)/8h, 

while in the latter case, 2e + h/2 + 2hg has no factors in c o m m o n  with h, so that 

d = ( p " - 1 ) / 4 h .  Thus we have 

and 

b = { h '  i f h - - - 2 ( m o d 4 )  

2h, if h -= 1 (mod 2) 

c = { 2 e + h / 2 + 2 g h  if h - - - 2 ( m o d 4 )  

4 e + h + 4 g h  i f h ~ l  (mod2) .  

Now w h e n h - - - 2 ( m o d 4 ) , e - = l  (mod 2), so that b + 2 c = 4 e + 2 h + 4 g h = - 0  

(mod 8), so that 

I F~'h'-~l = 4b(2 ~ + 1 - 2 '+~/-') = 4b [( - 2) "j-" + l]-" = 4bm~-p e. 

When  h =- 1 (mod 2), b + 2 c  = 8e + 4 h  + S g h  -= 4 (rood 8), so that 

[F"'b-'[ = 4b(2 -'h + 1 + 2 '+h) = 4 b [ ( -  2) h - 1] -~ = 4bm'-p z, 

so we are done when p -= - 1 (mod 4). 

Now suppose that p --- 1 (rood 4). If h --- 1 (rood 2) or h -= 2 (mod 4), then, as in 

the previous case, we get that IF a'b" c I = 4bm2p "-. So suppose that either h -= 0 

(mod 8) or h -= 4 (mod 8). Then,  since now e is odd,  we have in the former  case 

that e + h/4+ hg has no factors in c o m m o n  with h, so that d = (p" - 1)/2h, while 

in the latter case, e + h/4 is even and so d = (p" - 1)/h. Thus now we have 

b = I  h/2, if h - = 0 ( m o d 8 )  

(h /4 ,  if h - - - 4 ( m o d 8 )  

and 

c = l e + h / 4 + h g '  if h ~ 0 ( m o d 8 )  

[.(4e + h ) / 8 +  hg/2, if h ---4 (rood 8). 
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Now, when h - = 0  (modS) ,  b + 2 c = 2 e + h + 2 g h ~ - 2  or 6 ( m o d 8 )  so that  

I F~'b" ~ I = 4b(  2h/~ + 1) = 4bmp, while if h =- 4 (mod 8), b + 2c = e + h/2  + hg is 

odd,  so that  

IF  "'b'-~ [:= 4b(2 hI4 + 1 -+ 2 (h+4)/~) = 4bmp, 

since by T h e o r e m  1 we know that  p divides I F  °'b' ~ I. This comple tes  the p roof  of 

T h e o r e m  2. 

PROOF OF THE COROLLARY. Part  (i) follows directly f rom T h e o r e m  2(i) and its 

proof .  If p is e i ther  a F e r m a t  or  a s emi -Fe rma t  pr ime,  then it is easy to see that  

the order  of - 2 modu lo  p is congruent  to 0 or  4 (mod 8), so that,  by the p roof  of 

T h e o r e m  2, b ~- 0, 1 or 3 (mod 4), whence  par t  (ii) follows f rom T h e o r e m  2(ii). 

REMARKS. (a) In case (ii) of the Corol lary ,  if p = 2 q + 1 is a F e r m a t  pr ime,  

with q = 2', then if t = 1, b = 1, so that  p = 5 and I F  2'1' 11 = 22. 5, while if t => 2, 

b = 2', so that  IF "'b' c I = 2'+2P . If p = 2 k + 1 - 2 Ck+1)/2 is a s emi -Fe rma t  pr ime,  with 

k odd,  then b = k, so that  IFab'-c I = 4kp. 

(b) It has a l ready been  noted  that  for  n => 2, d = 1 only for  p"  = 32 , so that  

F 3'2"-I is i somorphic  to the full g roup  of affine l inear t r ans fo rmat ions  over  the 

field of o rder  9. For  p -= 1 (mod 4), F a'b' c ~ G(1 ,  p )  only if one of the fol lowing is 

true: (i) p --- 1 (rood 16) and h = (p - 1)/2, or  (ii) p -= 5 (rood 8) and h = p - 1, so 

that  - 2  is a pr imit ive root  modu lo  p. An  example  in case (i) is given by 

f,,,4. 5 ~  G(1 ,  17), and in case (ii) F 2'~' ' - G ( 1 , 5 )  and F ~'3'-5~- G(1,  13). O the r  

examples  in case (ii) are given by pr imes  p = 4q + 1 for  q a pr ime,  since for  such 

p, - 2  is a primit ive root  modu lo  p (see, for example ,  [4], page 185). 

(c) Because  of the te rm involving g ( = 0 or  1) in the value of c c o m p u t e d  in 

F , T h e o r e m  2, we get two sets of p a r a m e t e r s  a, b, c for each of the groups  ,.b, 

giving non-trivial  i somorphisms  be tween  them.  

(d) For  computa t iona l  purposes  in finding a, b and c, it is easiest  (and by 

T h e o r e m  l(ii), sufficient) to let n = 1 when p - - -1  (mod 4) and n = 2 when 

p -= - 1 (rood 4). Even  in the lat ter  case, the computa t ions  are great ly  simplified 

by the following observat ion .  If /3 is a pr imit ive root  modu lo  p, we may  suppose  

we have chosen the genera to r  a of the field K of order  p2 SO that  a p + I  = f t .  Then,  

if we know the value of t such that  /3' = - 2 ,  h and e can easily be obta ined ,  

f rom which b and c can be found using the computa t ions  in the p roof  of 

T h e o r e m  2, and finally a = b + c. 

(e) It is known as well (see [2]) that  F ~'2" 2~_ G ( 1 , 7 )  and F4'3'-2"~-~ f 4'2'-' =-- 

G(1,11) .  
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3. The kernel of the homomorphism and the proof of Theorem 3 

We conclude this paper with an investigation of the kernel of the homomor- 

phism from F °'b'-~ to G ( d , p " )  of Theorem 1. Let 

F "'b" ~ = ( R , S  : R 2 = R S ° R S b R S  ~ = 1) 

where a = b + e and let E = E°'b'-~ denote the kernel of the above-mentioned 

homomorphism. Let 

X I  = R S  2b E F a'b' ~ and X e = S - ° R S  2b+° = S "X~S ~ E F "'b" ~. 

By Lemma 3.1, Lemma 3.3 and the proof of Theorem 7.2 of [1], we know that if 

K "'b'-~ denotes the derived group of F "b'-~, then 

(i) F "'~'-~ = K "b'-~. (S), a split extension, and 

(ii) K °'b'-~ is abelian and generated by X~ and X2. 

Recall as well that S 4b = 1 so that the index of K "'b" ~ in F a'b" ~ is 4b. (Note that 

in applying the proof of Theorem 7.2 of [1], we are using the fact that 

F "'b' ~ "~ F . . . .  b via the isomorphism R ~ R and S ~ S 1.) 

LEMMA 1. For i = l a n d  2, R X ~ R  = X 7  ~. 

PROOF. Since X I = R S  2b, we have R X ~ R  = S 2 b R  = X 7  ~. Now X2= 

S - , R S 2 ~ + o = R S b R S  ~ + 2 b + , = R S b R S - b = [ R , S  b]. (Here [x,y]  denotes the 

commutator  x ~y- lxy . )  Thus R X 2 R  = S b R S  bR = [ S - b , R ] = X ; _  ~ and we are 

done. 

LEMMA 2. For i = 1 and  2, S 2bxis2b = X71 and  S (°+~)X~S (°+~= X~.  

Further,  X ~  = S ~XeS ~ a n d  X2 = S - b X I S b X I .  

PROOF. The first equalities follow from the definitions of X1 and X2. For the 

second, note that X ~ =  R S  2b = R S  a+b-c = S c R S  bRS  ~ ~ = SC[R,  S b ] S  -c. Also 
X ~  = R S 2 b R S  2b = ( R S b R ) 2 S  2b = (S-aRS~)2S2b = S - a [ R ,  S ~ ] S  a, since a = b + c. 

Thus S - ° - c X I S  a÷c = X ~ .  Since X 2 = S - a X 1 S  ~, it follows as well that 

s -o ~ x 2 s  °*~ = x ~ .  

Now from above, X ~  = S ~S -~X~S°S  ~ = S ~X2SL Also, X2X11 = S a R S ~ R  = 

S - ° S ~ R S  -b = S bRS  b =  S - b X ~ S  b, using S 4b= 1. Thus X2 = S b x ~ s b x ~ ,  con- 

cluding the proof of the lemma. 

For the remainder of this section, a, b, c, d, e and g will be as in the proof of 

Theorem 2. We consider various cases. 

Case  (i). p - = - i  (mod4)  

As pointed out in the proof of part (ii) of Theorem 1, H = (a~) lies in an 
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extension of degree  2 of Zp, so I L I = p  ~. Thus  I G ( d , p ~ ) I = I H J t L I =  

p2(pn _ 1)/d. Using the values of d and b found in T h e o r e m  2, we have that  
[E l  = ,n 2 and [K o.b. c I = m 2 t,-'. 

Now if h - = l  ( m o d 2 )  then b = 2 h = - 2  ( m o d 4 ) ,  so that  h ( a + c ) =  

ba+4eb +2gb ' -~2b  (mod 4b).  Thus  S h~"*')= S eb so that  by L e m m a  1, X i  ' =  

S "-~XiS "~b= S ht .... )X~Sh(°*~=Xf ". Thus  the o rder  of  X~ divides 2 h + 1  = 

- [ ( - 2 ) "  - 1] = - mp = ]m IP. Hence ,  since K ~b ' is abelian,  genera ted  by X, 

and X:, and has order  m2p :, we have that  

K a'b' ¢ = ( X l )  × (X2}  ~ Ct.,le × Ct,,,ip, 

where  for N > 0 an integer.  CN denotes  the cyclic group  of order  N. Thus  

E = (X~) x (Xf)  ~ G,< x G < -  

Since e and h are relat ively pr ime,  we can choose a posit ive integer  f so that  

ef=-i  ( m o d h ) .  Then  f rom h = b / 2  we get 8 e f t 8  ( m o d 4 b ) .  Now a + c =  

2b +8e +4gb so that  S °+c = S -~b+'~ whence  f rom L e m m a  2, for  i =  1 and 2, 

S ~ex~s~ = Xi  ~, so that  

S LX;~S ~= S ~rX, S ~r = X~ :v. 

Further ,  c = 4e + h +4gh =- ~h (mod 4) and a = b + c -= 3h (mod 4) f rom which 

we get  that  ei ther  a ~ _ + l  ( m o d S )  or c - = - + l  (modS) .  F rom this we can 

de te rmine  the action of S on X~ (by conjugat ion) .  For  example ,  if c ~ 1 (rood 8), 

then by L e m m a  2, 

X~ ~" S cX2SC = S IS 8kx2sSks, where  k = (c - 1)/8, 

so that  X2~ = S tX~ 2~r*S. Thus  SX~S ~ = X~ ev~ f rom which we can get SX~S ~ = 

X2(~w~ , since IX, I = ] X : [ i s o d d . I f a - = l  ( m o d S )  t h e n u s i n g X 2 = S  "X,S  ~ we 

get SX:S  ~= X~ 2v~ where  lhere k = ( a - 1 ) / 8 .  We get similar  results when 

c - = - I  ( rood8)  or  a = - - 1  (mod8) .  This comple tes  the analysis for  h ~ l  

(rood 2). 

If h = - 2  ( m o d 4 ) ,  then b = h = 2  ( m o d 4 ) ,  so that  ( a + c ) h / 2 =  

b2+2eb + 2 g b 2 = - 0  (rood 4b) since here  e is odd.  Thus  by L e m m a  1, 

X, = S <°+~"'-X,S ~" ~.~/2 = X~,-'. 

Hence  the order  of X, divides 2 h/2 - 1 = - [( - 2) ' / :  + 1] -- - m p =  I m IP, so that  

again we have K ''~'-~ = (X,) >: (X2) and E = (Xf)  x (X  p) ~ CI, < x CI,,I, as before .  

Choosing f as before ,  we now have that  4el=-4 (mod 4b),  so that  f rom 

a + c = 2 b + 4 e + 4 g b  we have  S 4X~S~=X1-2~, for i = 1 , 2 .  In this case a ~ l  

( m o d 4 )  so that,  using X,~=S °X~S ~, we get S X 2 S '  =X~ "-¢~ where  now 

k = (a - 1)/4. This comple tes  Case (i). 
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Case (ii). p --- 1 (rood 4) 

As pointed out in the proof of part (ii) of Theorem 1, H = (a d) lies in Zp, so 

IL[=p. Thus Ia(d,p°)l = p ( p ° - 1 ) / d .  Using the values of d and b found in 

Theorem 2, we now have that 

IEI--{ 
Also 

m2p, i f b - - - 2 ( m o d 4 ) ,  

m, otherwise. 

I m~-p "-, i f b - - - 2 ( m o d 4 ) ,  IKo  c J 

t rap, otherwise. 

Now b ~- 2 (rood 4) precisely when h --- 1 (mod 2) or h -= 2 (mod 4), so that, as in 

Case (i), we obtain K °'b" c = (X~) x (X2). Also, the action of S by conjugation on 

X1 and X2 is as found in Case (i). However E is different, as we shall now see. 

Since p =- 1 (mod 4), we have observed in Theorem l(ii) that c~ "e = o~ °' is in Zp. 

So choose an integer t, l < ~ t < p ,  so that a ~ - = t  (modp) .  Under the 

homomorphism of Theorem l(i), X, gets mapped to x ~, x - ( 1  - ~ " ) '  and X2 

gets mapped to x ~ x - a°'~(1 - a ~) ' in G ( d , p ' ) .  Thus X~'X~ gets mapped to 

the identity in G(d , p" ) ,  whence X; 'X2 is in E and has order ]m IP. Thus 

E = <X~) x (X~'X2> ~ Ct,,,r x Cjmlp. 

This completes the analysis of E when h -= 1 (mod 2) or h =- 2 (rood 4) (i.e. b --- 2 

(mod 4)). 

Suppose b is odd, so that h = 4b ~ 4 (mod 8). Then again choose a positive 

= S  , integer f so that ef =_ l (mod h ). Now a + c = 2b + e + 4gb, so that S,+C 2~+~ 

whence by Lemma 2, for i =  1 and 2, S "X~S ~ = X7  ~, so that S ~X~S = XI ,-v. 

Now, again by Lemma 2, X2 = S bX~SbX~, SO that X2 = XI :~+~. Since f is odd, 
l÷~hl4 

and since [X~ I divides mp, which divides ( -  2) a/-" + 1, we have X2 = X<-  , where 

the sign in the exponent is chosen according as f--- - 1  (rood 4) or f--- + 1 

(mod 4), respectively. Thus X2 is in (X,) and hence K "'b' ~= ( X t ) ~  C,,p and 

E = ( x f )  ~ Cm. 

Finally, suppose b ~- 0 (mod 4), so that h = 2b --- 0 (mod 8). Again choose f as 

before, so that 2ef---2 (mod 4b). Now a + c = 2b +2 e  +4gb so that we now 

have S -'X,S 2= XI ~v, for i =  1,2. By Lemma 2, X2 = S bX~S"X~, whence 

X ~  = X 1  +2'~'~ = X~'+~'~" , 

since I X~] divides mp = 2h~+ 1, where the sign in the exponent is chosen 
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according as f--- _+ 1 (mod 4). In any event, X~ is in (X,) and hence K °'b" c = 

( X , )  ~ C . , ,  and E = (X~) ~- C.,. This completes Case (ii) and the analysis of the 
kernel. 
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